
MODFLOW-2000, The U.S.
Geological Survey Modular

Ground-Water Model – GMG
Linear Equation Solver Package

Documentation

Initial Error

0
5

10
15

20
25

30

0
5

10
15

20
25

30

−1

−0.5

0

0.5

1

XY

E
rr

or →

Fine-Grid Smoothing

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

↓

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

Fine-Grid Smoothing

←

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

Coarse-Grid Correction

U.S. GEOLOGICAL SURVEY
Open-File Report 2004-1261

The U.S. Geological Survey Modular Ground-Water
Model – GMG Linear Equation Solver Package

Documentation

John D. wilson Richard L. Naff

U.S. GEOLOGICAL SURVEY
Open-File Report 2004-1261

Denver, Colorado
2004

U.S. DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

The use of brand, tradeTM, or firm names in this report is for identification purposes
only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

Chief, Branch of Regional Research
U.S. Geological Survey
Box 25046, Mail Stop 418
Denver Federal Center
Denver, CO 50225-0046

Copies of this report can be purchased
from:

U.S. Geological Survey
Branch of Information Services
Box 25286
Denver, CO 50225-0425

Preface

This report describes the linear equation solver based in cell-centered multigrid and
linked with the U.S. Geological Survey (USGS) MODFLOW-2000 (MF2K) computer
program. The computer program implementing the linear equation solver is named
GMG and is written by the authors of this report. The GMG solver is based on a
method known in the literature as geometric multigrid; the implementation herein is
as a preconditioner for the conjugate gradient method.

Comparisons are made between the GMG solver and the algebraic multigrid
(AMG) solver. The AMG solver was developed by the German National Research
Center for Information Technology (GMD) and is linked to MF2K using the LINK-
AMG (LMG) package described in Mehl and Hill (2001). The AMG source code is
named AMG1R6 and has a release number 1.6, date July, 2002. The AMG code is
a freeware program but has some licensing restrictions; currently (2004), use of this
code by the USGS is intended for research purposes only. More recent developments
in AMG software are available from GMD but not as freeware programs. The com-
mercial versions of AMG are likely to be more sophisticated and require less computer
memory than the freeware versions.

The performance of GMG has been tested on a variety of ground-water models.
It is possible, and even likely, that GMG will not be sufficiently robust for all future
ground-water modeling problems. In the event that a ground-water modeling problem
cannot be solved using the GMG package in MF2K with sufficient efficiency, then
the authors of this report should be notified and given a detailed description of the
problem.

iii

Contents

Abstract 1

Introduction 1

The GMG Solver and MF2K 2
Finite-Difference Matrix . 3
Specified Heads and Inactive Cells . 4
Linear Solution . 6
Nonlinear Solution . 8
Convergence Criteria . 9

Multigrid 9
Smoothers . 10
ILU Smoother . 11
Coarse-Grid Correction . 13
ν-Cycle . 19

Comparison of GMG with AMG 21

Input Instructions for the GMG Solver 23
Adaptive Damping Example . 26
Semi-Coarsening Example . 29
ILU PCG Example . 31

Description of GMG Interface 32
Module GMG1ALG . 34
Module GMG1AP . 34

Description of GMG Library 35
Vector Library . 36
Solver Library . 39

PCG Operator . 39
MG Operator . 40

CCFD Library . 42
MF2KGMG Library . 43

List of Figures

1. Smoothing the error . 14
2. Coarse-Grid Correction . 18
3. Grid Schedules . 20
4. Fractures with entrapped NAPL . 23

iv

List of Tables

1. Computational differences between GMG and AMG 21

v

MODFLOW-2000, THE U.S. GEOLOGICAL SURVEY MODULAR
GROUND-WATER MODEL – GMG LINEAR EQUATION SOLVER

PACKAGE DOCUMENTATION

By John D. Wilson and Richard L. Naff

Abstract

A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient
algorithm, has been developed for solving systems of equations resulting from applying
the cell-centered finite difference algorithm to flow in porous media. This solver has
been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-
2000. The documentation herein is a description of the solver and the adaptation to
MODFLOW-2000.

Introduction

The U.S. Geological Survey (USGS) modular ground-water model MODFLOW-2000
(MF2K) is a computer program that simulates three-dimensional transient ground-
water flow through a porous medium. For the purposes of this report, it is only
necessary to consider the steady-state case. The elliptic partial-differential equation
(PDE) of steady-state ground-water flow used in MF2K is given by

−∇ ·K∇p = W, (1)

where p is the hydraulic head (L), K is a hydraulic conductivity tensor (L/T), and
W is a source/sink term (T-1). An approximate solution to equation (1) is obtained
by using a finite-difference method (Harbaugh and others, 2000; McDonald and Har-
baugh, 1988). The hydraulic heads are approximated at cell-centers. In this report,
this method is referred to as the cell-centered finite difference (CCFD) method, and
the finite-difference matrix that results from this method is referenced as the CCFD
matrix. The modular structure of MF2K enables the user to select from a number of
solvers to evaluate the CCFD matrix equation.

Multigrid methods are generally accepted as being among the fastest numerical
methods for the solution of elliptic PDE’s (Trottenberg and others, 2001; Briggs, 1987;
McCormick, 1987; Wesseling, 1991). Algebraic multigrid (AMG) methods (Ruge and
Stüben, 1987; Mehl and Hill, 2001) are especially robust in handling problems with
large variations in the hydraulic-conductivity coefficient but are complex and can
require large amounts of computer memory. Simpler multigrid methods, using signif-
icantly less memory, can be effective when used in conjunction with the preconditioned
conjugate gradient (PCG) method. The solver was developed by the USGS based on
a conjugate gradient method preconditioned by cell-centered multigrid and is referred
to herein as the GMG solver. As opposed to AMG, the preconditioning in GMG is

1

based on a solver method known as geometric multigrid (Briggs, 1987; McCormick,
1987; Trottenberg and others, 2001; Wesseling, 1991; Hackbush, 1985); precepts of
this method, as it applies to a CCFD matrix and the conjugate gradient scheme, are
described in this report.

The GMG solver consists of two primary computer codes; the GMG library and
the GMG interface. The GMG library is a collection of modules written in the C
language. The GMG interface is a FORTRAN 95 code that links the GMG library
with the MF2K program. The GMG library implements a generic operator and a
collection of generic algorithms that are problem independent and can facilitate a
modular approach for solving a variety of programming problems.

The purpose of this report is to document the GMG solver as applied to the
evaluation of the linear equation in the MF2K program. The development of the
GMG linear equation solver should be of interest to ground-water modelers who work
with complex and memory-intensive simulations on workstations. The reduction in
computer execution time, relative to other solvers using a comparable amount of
memory, achieved by the GMG solver makes this solver an important and useful
computer code for the USGS and the research community.

Detailed descriptions of the matrix equation and the multigrid preconditioner
are given, along with a discussion of nonlinear iterations and convergence criteria.
Comparisons between the GMG solver and the AMG solver for specific problems are
presented so that relative efficiencies of the two methods can be evaluated. Algorithms
are presented throughout this report to describe the methods used by the GMG solver;
they coincide closely with the actual implementation of the GMG library.

For those readers interested only in using the GMG package in MF2K, a descrip-
tion of the input file is provided in the “Input Instructions for the GMG Solver”
section. Sufficient information for each input item is provided to enable a user to
implement this package without reading a description of the GMG method.

A description of the GMG interface program is provided. This description explains
how the GMG library is linked to the MF2K program and will help in linking GMG
to older versions of MODFLOW. It also provides a high-level description of the GMG
method.

The GMG library implements the algorithms described in this report. Those
familiar with the C programming language can gain an understanding of the generic
algorithms by reading the “Description of the GMG Library” section. Modifications
to the methods described in this report and future enhancements can be facilitated
within the framework of these generic algorithms.

The GMG Solver and MF2K

The GMG solver is a computer code that consists of a library of functions written in
the C language and an interface program written in FORTRAN. The interface pro-
gram links MF2K to the GMG library. The GMG interface is activated by including
file type ”GMG” in the name file (Harbaugh and others, 2000, p. 43-44).

Hydraulic conductances, specified heads, inactive cells, and the right-hand side

2

are passed into the GMG interface. The GMG interface calls GMG library functions
to assemble the CCFD matrix equation and preconditioner, approximate a solution
using the PCG method, and determine convergence of the solution. Arrays of data
and variables assembled by MF2K and passed into the GMG interface are referred
to as internal. Arrays of data and variables used by the GMG solver that are not
internal are allocated in the GMG library.

Throughout the remainder of this report, the number of columns, rows, and lay-
ers in the finite-difference grid are denoted as l, m, and n respectively. The finite-
difference grid contains N = l ×m× n cells. The solution vector is of length N and
represents values of the hydraulic head in each cell center. The heads and cell centers
have an (i, j, k) ordering with 0 ≤ i ≤ l − 1, 0 ≤ j ≤ m − 1, and 0 ≤ k ≤ n − 1.
This ordering is consistent with arrays in the C language where the indexing always
starts at 0. A sequential ordering of the cells is given by the multi-index J, where
J = i + jl + klm.

Remark 1. The indices for variables in this report are inconsistent with what are
used in the MODFLOW documentation. The MODFLOW documentation uses i, j, k
(row, column, layer) indexing; for efficiency, the MODFLOW computer code uses
j, i, k (column, row, layer) indexing. The GMG code uses i, j, k (column, row, layer)
indexing. The meaning of i and j is interchanged with i indexing columns instead of
rows and j indexing rows instead of columns. Also, the indices in MODFLOW all
start at 1 while the indices in GMG start at 0.

Finite-Difference Matrix

When applying the cell-centered finite-difference scheme on a regular grid, conserva-
tion of mass implies that, for each cell node J , the following equation is applicable:

−CV(J − lm) ∗ p(J − lm)− CC(J − l) ∗ p(J − l)− CR(J − 1) ∗ p(J − 1)
+DD(J) ∗ p(J)
−CR(J) ∗ p(J + 1)− CC(J) ∗ p(J + l)− CV(J) ∗ p(J + lm) = RHS(J)

(2)

where

DD(J) = CV(J − lm) + CC(J − l) + CR(J − 1)
+CR(J) + CC(J) + CV(J)− HCOF(J)

and CR, CC and CV are MF2K internal arrays storing the hydraulic conductances
between adjacent columns, rows, and layers, respectively. The internal array HCOF

(Harbaugh and others, 2000, p. 11,22,33,35,37) contains the storage terms, the sum
of coefficients of head from source and sink terms, and correction terms applied under
dewatered conditions. Storage terms are reflections of parameters in the transitive
flow equation, which is fully discussed in McDonald and Harbaugh (1988). The
internal array RHS is the right-hand side contribution corresponding to the hydraulic
head p at the center of cell J . A system of equations based in equation (2) defines an
N ×N CCFD matrix equation. This matrix equation is denoted as

Ap = f. (3)

3

The GMG package allocates and assembles the DD array, but does not allocate memory
for any of the other coefficients in the CCFD matrix. Under normal compilation of
MF2K, the coefficients and the right-hand side are single precision. The solution
vector p is stored as an internal array that is double precision. The GMG package
automatically detects the precision of internal arrays. Thus, linkage to the GMG
library is possible even if MF2K is compiled in forced double precision.

Specified Heads and Inactive Cells

The internal integer array IBOUND indicates which cells have a specified head or are
inactive. If IBOUND(J) = 0, then an inactive cell or a cell that has gone dry is
indicated. If IBOUND(J) < 0, then a specified head is indicated, and the corresponding
value of the specified head is stored in p. In the case of an inactive or dry cells, the
corresponding value in p is set to the value of the internal variable HNOFLO. Any
cell J with IBOUND(J) ≤ 0 can be treated as a specified head. It is necessary to apply
the specified heads before solving the matrix problem for the unknown heads. Let C
be the matrix defined by

[Cp](J) =

{
p(J) if IBOUND(J) ≤ 0,
0 otherwise.

(4)

The specified heads are moved to the right-hand side by subtracting ACp from both
sides of equation (3), resulting in

A(I − C)p = f − ACp (5)

where I is the identity matrix. Equation (5) is then multiplied by (I − C) to form a
symmetric system of equations given by

(I − C)A(I − C)p = (I − C)(f − ACp). (6)

Finally, Cp is added to both sides to make the system of equations non-singular,
resulting in

((I − C)A(I − C) + C)p = (I − C)(f − ACp) + Cp. (7)

In summary, equations (5) and (6) zero out the columns and rows, respectively, of
A corresponding to specified heads, while equation (7) places a value of one on the
corresponding diagonal elements.

If p0 is an initial guess satisfying Cp − Cp0 = 0, then the residual corresponding
to equation (7) is given by

r0 = (I − C)(f − Ap0). (8)

Elements of r0 corresponding to specified heads have value zero; otherwise the values
are the same as the residual for the original problem equation (3). Thus, an equivalent
expression for equation (7) is

((I − C)A(I − C) + C)e = r0 (9)

4

where p = p0 + e. Only the diagonal DD of the matrix (I − C)A(I − C) + C and the
residual r0 are explicitly assembled. This assembly is given by the following algorithm:

Algorithm 1 CCFD assemble(r0, p0, A):

1. For k = 0, . . . , n− 1
For j = 0, . . . ,m− 1
For i = 0, . . . , l − 1

(a) J = i + jl + klm

(b) If IBOUND(J) ≤ 0, then
r0(J) = 0, DD(J) = 1

(c) Else

i. a = 0, b = RHS(J)

ii. If k > 0, then
COND = CV(J − lm),
a = a + COND,
b = b− COND ∗ p0(J − lm)

iii. If j > 0, then
COND = CC(J − l),
a = a + COND,
b = b− COND ∗ p0(J − l)

iv. If i > 0, then
COND = CR(J − 1),
a = a + COND,
b = b− COND ∗ p0(J − 1)

v. If i < l − 1, then
COND = CR(J),
a = a + COND,
b = b− COND ∗ p0(J + 1)

vi. If j < m− 1, then
COND = CC(J),
a = a + COND,
b = b− COND ∗ p0(J + l)

vii. If k < n− 1, then
COND = CV(J),
a = a + COND,
b = b− COND ∗ p0(J + lm)

viii. If a = 0, then
IBOUND(J) = 0,
p0(J) = HNOFLO,
DD(J) = 1,
r0(J) = 0

5

ix. Else
DD(J) = a− HCOF(J),
r0(J) = b− DD(J) ∗ p0(J).

Note that step 1(c)viii sets a cell to inactive if all the surrounding conductances are
zero, indicating no flow in or out of the cell. The evaluation of the matrix-vector
product in equation (9) is computed using the following procedure:

Algorithm 2 CCFD eval(p1, p2, A):

1. For k = 0, . . . , n− 1
For j = 0, . . . ,m− 1
For i = 0, . . . , l − 1

(a) J = i + jl + klm

(b) a = 0

(c) If IBOUND(J) > 0, then

i. If k > 0 and IBOUND(J − lm) > 0, then
a = a− CV(J − lm) ∗ p2(J − lm)

ii. If j > 0 and IBOUND(J − l) > 0, then
a = a− CC(J − l) ∗ p2(J − l)

iii. If i > 0 and IBOUND(J − 1) > 0, then
a = a− CR(J − 1) ∗ p2(J − 1)

iv. If i < l − 1 and IBOUND(J + 1) > 0, then
a = a− CR(J) ∗ p2(J + 1)

v. If j < m− 1 and IBOUND(J + l) > 0, then
a = a− CC(J) ∗ p2(J + l)

vi. If k < n− 1 and IBOUND(J + lm) > 0, then
a = a− CV(J) ∗ p2(J + lm)

(d) p1(J) = DD(J) ∗ p2(J)− a.

Linear Solution

Given an approximate solution ê of equation (9), the approximate hydraulic head p̂
is returned as

p̂ = p0 + ê. (10)

An approximate solution to equation (9) is obtained using the PCG algorithm. The
PCG algorithm approximates the solution to a linear equation Ax = b, apply-
ing a preconditioner B such that B−1Ax = B−1b is, in some sense, better condi-
tioned and easier to solve than the original problem (Golub and Van Loan, 1989;

6

Xu, 1992). The A matrix and the preconditioner B need not be explicitly as-
sembled. A generic PCG operator is defined to contain the actions of these op-
erators. Let PCG.A eval(x1, x2, PCG.A) define the operation x1 = Ax2, and let
PCG.B eval(x1, x2, PCG.B) define the operation x1 = B−1x2. Furthermore, let (x1, x2) =

xT
1 x2 define the Euclidean inner product with associated l2-norm ‖x‖ =

√
(x, x).

Given a convergence criterion BIGR ≤ DRCLOSE, where BIGR is the l2-norm of the
residual, and a maximum number of iterations IITER, the generic PCG algorithm is
given by

Algorithm 3 PCG eval(x, b,PCG):

1. x0 = 0, r0 = b

2. BIGR= ‖r0‖

3. If BIGR> 0, then

(a) PCG.B eval(p0, r0, PCG.B)

(b) β0,N = β0,D = (r0, p0)

(c) PCG.A eval(z0, p0, PCG.A)

(d) α0 = β0,D/(z0, p0)

(e) x1 = x0 + α0p0

(f) r1 = r0 − α0z0

(g) k = 1

(h) BIGR= ‖r1‖
(i) While BIGR>DRCLOSE and k <IITER, do

i. PCG.B eval(zk, rk, PCG.B)

ii. βk,N = (rk, zk)

iii. βk = βk,N/βk,D

iv. βk,D = βk,N

v. pk = zk + βkpk−1

vi. PCG.A eval(zk, pk, PCG.A)

vii. αk = βk,N/(pk, zk)

viii. xk+1 = xk + αkpk

ix. rk+1 = rk − αkzk

x. k = k + 1

xi. BIGR= ‖rk+1‖

4. x = xk

Algorithm 3 corresponds closely to the PCG algorithm described in Golub and Van Loan
(1989). An initial guess of zero is not required in the PCG algorithm. However, if a
zero initial guess is used, then the right-hand side can be overwritten by the residual,
eliminating the need for one work vector.

7

Nonlinear Solution

In cases where conductances or sink/source terms are head dependent, the flow equa-
tion is nonlinear and the ground-water flow equation (1) is written as follows:

−∇ ·K(p)∇p = f(p). (11)

Equation (11) is linearized using the following simple substitution method:

−∇ ·K(pi−1)∇pi = f(pi−1).

The indices i and i−1 imply an iterative scheme whereby K and f are updated using
hydraulic heads from a previous solution, pi−1, before obtaining the current solution
pi. The equivalent matrix equation is given by

A(pi−1)pi = f(pi−1)

and the resulting Picard iteration is given by

pi = Â−1(pi−1)f(pi−1), (12)

where Â−1 is an approximate inverse obtained form the PCG algorithm. Each Picard
iteration results in a new CCFD problem requiring an approximate linear solution.
Each Picard iteration is referred to as a nonlinear iteration, or outer iteration, and
solutions of the CCFD problem in equation (12) are referred to as as a linear iteration,
or inner iteration. The inner iteration uses initial guess pi−1, with an initial residual
given by

ri−1 = fi−1 − Ai−1pi−1 (13)

where Ai−1 = A(pi−1) and fi−1 = f(pi−1). The nonlinear solution is advanced by

pi = pi−1 + êi−1 (14)

where the head change êi−1 is obtained from the PCG algorithm applied to the linear
equation

Ai−1ei−1 = ri−1. (15)

A problem is strongly nonlinear if the iterates pi change dramatically from one
outer iteration to the next. Convergence of a strongly nonlinear problem may be
accelerated by a damping in the head change:

pδi
= pi−1 + δiêi−1 (16)

where 0 < δi ≤ 1. The damping parameter δi may be fixed for all iterations, or it may
vary adaptively from one outer iteration to the next. The GMG solver implements
either a fixed damping or Cooley’s method (Mehl and Hill, 2001) of adaptive damping
based on a head-change criterion.

8

Convergence Criteria

The convergence criterion of the Picard iteration is based on the head change mea-
sured by the max-norm:

BIGH = max
J
|êi−1(J)|. (17)

The convergence criterion used in the PCG algorithm for the linear iteration is based
on the l2-norm of the residual:

BIGR = ‖ri‖, (18)

where

ri = fi−1 − Ai−1pi.

The convergence criterion can be adaptively relaxed to avoid unnecessary PCG itera-
tions in the early stages of the nonlinear approximation. The strategy for an adaptive
convergence criterion is based on the residual of the damped solution. The residual
rδi

of the damped solution is given by

rδi
= fi−1 − Ai−1pδi

= (1− δi)ri−1 + δiri (19)

Based on equation (19), an adaptive convergence criterion DRCLOSE for the PCG
algorithm is defined as

DRCLOSE = (1− δi−1) ∗ ‖ri−1‖+ δi−1 ∗ RCLOSE (20)

where RCLOSE is a specified bound on BIGR and δi−1 is used as an approximation to
δi.

Remark 2. Users of the GMG solver need to be aware that the convergence criteria of
this package are not necessarily analogous to criteria of other MF2K solver packages.

Remark 3. If the nonlinear problem cannot be accelerated by damping, then an adap-
tive PCG convergence criterion can be simulated by limiting the maximum number
of PCG iterations.

Remark 4. The residual ri−1 given in equation (13) also can be used as a stopping
criterion for the Picard iteration. The LMG package (Mehl and Hill, 2001) uses a
scaled l2-norm of ri−1 for the convergence criterion.

Multigrid

The cell-centered multigrid algorithm described in this report is based in the cell-
centered multigrid method presented in Ewing and Shen (1993); Bramble and others
(1996). In turn, these results follow from a non-variational multigrid analysis de-
veloped in Bramble and others (1991). Only a qualitative presentation of the cell-
centered multigrid method is given here, followed with some numerical examples.

9

Smoothers

The multigrid method begins with a smoothing procedure (also known as relaxation)
in the form of a stationary iteration (Kelley, 1995) with initial guess p0. The smoother
is denoted as Sµ0 where µ0 is the number of iterations. The action of Sµ0 is given as
follows:

Algorithm 4 p = Sµ0(p0, f):

1. r0 = f − Ap0

2. For k = 0, . . . , µ0 − 1

(a) pk+1 = pk + B−1rk

(b) rk+1 = f − Apk+1

3. p = pµ0

where B is a preconditioner. Note that, while Algorithm 4 does contain a precondi-
tioner, it is a stationary method and not a conjugate gradient method. The error ek

after k iterations of Algorithm 4 is given by

ek = (I −B−1A)ek−1. (21)

The spectral radius of the iteration matrix M = (I −B−1A) is defined as

ρ(M) = {max |λ| : λ eigenvalue of M}.

If ρ(M) ≤ α < 1, then there exists α < 1 such that ‖ek‖ ≤ αk‖e0‖; α is defined as
the convergence factor.

Algorithm 4 is a generic algorithm and different types of preconditioners result in
different types of iterations. A family of standard iterations, as defined in Golub and
Van Loan (1989) and Atkinson (1988), result from the following preconditioners:

• Jacobi Iteration: B = D where D = diag(A).

• Gauss-Seidel Iteration: B = L+D, or B = D+U where L is the lower triangular
part of A and U is the upper triangular part.

• Symmetric Gauss-Seidel (SGS): B = (L + D)D−1(D + U).

• Symmetric Successive Over-Relaxation (SSOR): For some real-valued 0 ≤ ω < 1

B =
1

1− ω2
((1− ω)L + D)D−1(D + (1− ω)U).

10

Standard iterations have different convergence factors for different types of problems.
For example, the Jacobi Iteration is convergent for diagonally dominant problems
while Gauss-Seidel is convergent for symmetric positive definite problems. For ω = 0,
the SSOR iteration is equivalent to SGS. The SSOR iteration can be significantly
faster than SGS, but it is difficult to derive an optimal ω.

Remark 5. It can be shown (Xu, 1992) that if A is a symmetric positive definite matrix
and α < 1, then the PCG method with preconditioner B will have a convergence
factor strictly less than α. Thus, PCG serves as an acceleration of the stationary
iteration in Algorithm 4.

ILU Smoother

Another type of preconditioning is incomplete factorization (Benzi, 2002; Barrett and
others, 1994). Incomplete factorization is an approximation to the exact factorization
A = L̂D̂Û , where L̂ is lower triangular, D̂ is diagonal, and Û is upper triangular.
Given a complete factorization, the system of equations is solved by a backward
substitution, followed by diagonal scaling, followed by a forward substitution. The
full factorization generates fill-in, resulting in a dense matrix. The strategy behind
incomplete factorization is to limit the amount of fill-in while approximating the
complete factorization. A zero fill-in strategy results in an incomplete factorization
with the same number of non-zeros as the original matrix. The zero fill-in strategy,
when applied to the CCFD matrix, requires only assembling the diagonal D̂; the
upper and lower triangular parts are assembled as needed in the evaluation process.
This type of incomplete factorization is referred to as ILU0-D and is expressed in
matrix form as

B = (L + D̂)D̂−1(D̂ + U).

Henceforth, the ILU0-D smoother will be referred to as simply ILU. The diagonal D̂
is assembled by the following procedure:

Algorithm 5 CCFD ILU assemble(D̂, A):

1. For i = 0, . . . , l − 1,
For j = 0, . . . ,m− 1,
For k = 0, . . . , n− 1

(a) J = i + jl + klm

(b) a = 0

(c) If IBOUND(J) > 0, then

i. If i > 0 and IBOUND(J − 1) > 0, then
a = a + CR(J − 1) ∗ CR(J − 1)/D̂(J − 1)

ii. If j > 0 and IBOUND(J − l) > 0, then
a = a + CC(J − l) ∗ CC(J − l)/D̂(J − l)

11

iii. If k > 0 and IBOUND(J − lm) > 0, then
a = a + CV(J − lm) ∗ CV(J − lm)/D̂(J − lm)

(d) D̂(J) = DD(J)− a.

The evaluation of the ILU smoother is given by

Algorithm 6 CCFD ILU eval(u, p, ILU):

1. Backward substitution
For i = 0, . . . , l − 1
For j = 0, . . . ,m− 1
For k = 0, . . . , n− 1

(a) J = i + jl + klm

(b) a = 0

(c) If IBOUND(J) > 0, then

i. If k > 0 and IBOUND(J − lm) > 0, then
a = a + CV(J − lm) ∗ u(J − lm)

ii. If j > 0 and IBOUND(J − l) > 0, then
a = a + CC(J − l) ∗ u(J − l)

iii. If i > 0 and IBOUND(J − 1) > 0, then
a = a + CR(J − 1) ∗ u(J − 1)

(d) u(J) = (p(J) + a)/D̂(J)

2. Forward Substitution
For i = l − 1, . . . , 0
For j = m− 1, . . . , 0
For k = n− 1, . . . , 0

(a) J = i + jl + klm

(b) a = 0

(c) If IBOUND(J) > 0, then

i. If k < n− 1 and IBOUND(J + lm) > 0, then
a = a + CV(J) ∗ u(J + lm)

ii. If j < m− 1 and IBOUND(J + l) > 0, then
a = a + CC(J) ∗ u(J + l)

iii. If i < l − 1 and IBOUND(J + 1) > 0, then
a = a + CR(J) ∗ u(J + 1)

(d) u(J) = u(J) + a/D̂(J).

12

Remark 6. The PCG2 package in MF2K (Hill, 1990) allows the use of a modified
ILU preconditioner. The modified ILU preconditioner adds terms to the diagonal D̂
of the factorization that would otherwise have presence in the off-diagonals of the full
factorization. In the PCG2 package, the factors are weighted by a RELAX parameter
between 0 and 1. If the value of RELAX is 1, then the row-sums of the incomplete
factorization are equal to the row-sums of the CCFD matrix. This results in a better
spectral condition number for the PCG method (Dupont and others, 1968; Gustaffson,
1978). However, the modified ILU preconditioner can be sensitive to rounding error
and can break down during factorization (Van der Vorst, 1990). Our experience is
that modified ILU does not function well for stationary iterations such as Algorithm
4.

Remark 7. The right-hand side in Algorithm 6 can be overwritten by the solution,
eliminating the need to store an additional work vector for the ILU smoothing oper-
ation.

Remark 8. The evaluation of the symmetric Gauss-Seidel smoother is identical to the
evaluation of the ILU smoother with DD replacing D̂. The symmetric Gauss-Seidel
smoother eliminates the need to store the diagonal of the factorization, but it is not
as robust a smoother as ILU. However, problems where savings in computer memory
is beneficial may warrant use of this smoother.

Coarse-Grid Correction

In this section the fine-grid space is denoted as Ωh and the coarse-grid space as ΩH ,
where h and H represent the average cell diameters of the fine grid and coarse grid
respectively. Although not necessary in general, the number of coarse-grid cells is
assumed to be given by NH = (1/H)d, where d = 1, 2, 3 is the spatial dimension.
Under standard coarsening, H = 2h so that the number of fine-grid cells is Nh =
2dNH . The solution p is in the fine-grid space and is denoted as ph ∈ Ωh. Henceforth,
vectors and matrices (linear operators) in the fine-grid and coarse-grid spaces will be
denoted by superscript h and superscript H respectively.

Algorithm 4 tends to be good for smoothing the error eh
k. To illustrate the effect of

smoothing, a CCFD matrix Ah is assembled from a two-dimensional boundary-value
problem discretized on a 32× 32 grid. A random hydraulic-conductivity field, which
has a variance of up to five orders of magnitude, is defined on a 16× 16 coarse grid.
A random right-hand side is assembled by letting fh = Ahuh, where uh is a random
vector. The initial guess ph

0 is chosen to be zero so that the initial error is uh. The
result of the smoothing procedure is illustrated in figure 1. After three iterations,
only smooth error generally remains and further smoothing becomes less effective at
reducing the error.

13

0
5

10
15

20
25

30

0
5

10
15

20
25

30

−1

−0.5

0

0.5

1

XY

E
rr

or

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

Figure 1: Going from top left clockwise, the initial error, the error after one smooth-
ing, after two smoothings, and after three smoothings using Algorithm 4.

The idea behind the coarse-grid correction is that the smooth error can be ac-
curately approximated on a coarser grid and used to correct the fine-grid solution.
Coarse-grid nodal values are transfered to the fine-grid through a prolongation oper-
ator P using the natural embedding of ΩH in to Ωh. If pH ∈ ΩH is a vector of nodal
values, then P is a Nh×NH matrix. Let NH = l0×m0×n0 and Nh = 2l0×2m0×2n0.
The three-dimensional prolongation is given by

Algorithm 7 CCFD P eval(ph, pH , l0, m0, n0):

1. l = 2l0, m = 2m0, n = 2n0.

2. For k0 = 0, . . . , n0 − 1
For j0 = 0, . . . ,m0 − 1
For i0 = 0, . . . , l0 − 1

(a) i = 2i0, j = 2j0, k = 2k0

(b) JH = i0 + j0l0 + k0l0m0

(c) Jh = i + jl + klm

14

(d)

ph(Jh) = pH(JH)
ph(Jh + 1) = pH(JH)
ph(Jh + l) = pH(JH)
ph(Jh + 1 + l) = pH(JH)
ph(Jh + lm) = pH(JH)
ph(Jh + 1 + lm) = pH(JH)
ph(Jh + l + lm) = pH(JH)
ph(Jh + 1 + l + lm) = pH(JH).

For eh
k ∈ Ωh, the coarse-grid error is defined to be the unique function eH

k ∈ ΩH such
that

(AHeH
k , w) = (Aheh

k, Pw), for all w ∈ ΩH . (22)

where (·, ·) is the usual algebraic inner product. Equation (22) implies that

eH
k = AH−1

P T Aheh
k = AH−1

P T rh
k .

The NH ×Nh restriction operator R = P T is given algorithmically as

Algorithm 8 CCFD R eval(pH , ph, l0, m0, n0):

1. l = 2l0, m = 2m0, n = 2n0

2. For k0 = 0, . . . , n0 − 1
For j0 = 0, . . . ,m0 − 1
For i0 = 0, . . . , l0 − 1

(a) i = 2i0, j = 2j0, k = 2k0

(b) JH = i0 + j0l0 + k0l0m0

(c) Jh = i + jl + klm

(d)

pH(JH) = ph(Jh)
+ ph(Jh + 1)
+ ph(Jh + l)
+ ph(Jh + 1 + l)
+ ph(Jh + lm)
+ ph(Jh + 1 + lm)
+ ph(Jh + l + lm)
+ ph(Jh + 1 + l + lm),

If it is assumed the hydraulic conductances are constant within each coarse-grid cell
and that the conductances across cell faces result from harmonic averaging (Harbaugh
and others, 2000, p. 22-27), then it can be shown that

(AhPv, Pw) = 2(AHv, w), for all v, w ∈ ΩH . (23)

15

From equation (23), the NH ×NH coarse-grid CCFD matrix AH is defined as

AH =
1

2
RAhP =

1

2
P T AhP. (24)

Special attention must be given when applying cells with specified heads to equation
(24). Accounting for these special cells in the coarsening makes the GMG solver effec-
tive for problems with complex geometries modeled in MF2K by the use of inactive
cells. A temporary fine-grid array EEh is first assembled to eliminate contributions of
conductances corresponding to cells with specified heads to the diagonal. This array
is assembled as

Algorithm 9 EE assemble(EEh, Ah):

1. For k = 0, . . . , n− 1
For j = 0, . . . ,m− 1
For i = 0, . . . , l − 1

(a) Jh = i + jl + klm

(b) If IBOUNDh(Jh) ≤ 0, then

i. EEh(Jh) = 0

(c) Else,

i. a = 0

ii. If k > 0 and IBOUNDh(Jh − lm) > 0, then
a = a + CVh(Jh − lm)

iii. If j > 0 and IBOUNDh(Jh − l) > 0, then
a = a + CCh(Jh − l)

iv. If i > 0 and IBOUNDh(Jh − 1) > 0, then
a = a + CRh(Jh − 1)

v. If i < l − 1 and IBOUNDh(Jh + 1) > 0, then
a = a + CRh(Jh)

vi. If j < m− 1 and IBOUNDh(Jh + l) > 0, then
a = a + CCh(Jh)

vii. If k < n− 1 and IBOUNDh(Jh + lm) > 0, then
a = a + CVh(Jh)

viii. EEh(Jh) = DDh(Jh)− a.

Using EEh, the coarse-grid matrix AH can be assembled as

Algorithm 10 CCFD RAP assemble(AH , Ah, l0, m0, n0):

1. l = 2l0, m = 2m0, n = 2n0

2. For k0 = 0, . . . , n0 − 1
For j0 = 0, . . . ,m0 − 1
For i0 = 0, . . . , l0 − 1

16

(a) i = 2i0, j = 2j0, k = 2k0

(b) JH = i0 + j0l0 + k0l0m0

(c) Jh = i + jl + klm

(d) Excluding conductances for cells corresponding to specified

heads
CRH(JH) = 1/2(CRh(Jh + 1) + CRh(Jh + 1 + l))

+ 1/2(CRh(Jh + 1 + lm) + CRh(Jh + 1 + l + lm))

CCH(JH) = 1/2(CCh(Jh + l) + CCh(Jh + 1 + l))
+ 1/2(CCh(Jh + l + lm) + CCh(Jh + 1 + l + lm))

CVH(JH) = 1/2(CVh(Jh + lm) + CVh(Jh + 1 + lm))
+ 1/2(CVh(Jh + l + lm) + CVh(Jh + 1 + l + lm))

DDH(JH) = 1/2(EEh(Jh) + EEh(Jh + 1))
+ 1/2(EEh(Jh + l) + EEh(Jh + 1 + l))
+ 1/2(EEh(Jh + lm) + EEh(Jh + 1 + lm))
+ 1/2(EEh(Jh + l + lm) + EEh(Jh + 1 + l + lm))
+ CRH(JH − 1) + CRH(JH)
+ CCH(JH − l0) + CCH(JH)
+ CVH(JH − l0m0) + CVH(JH)

(e) If DDH(JH) = 0, then

i. DDH(JH) = 1

ii. IBOUNDH(JH) = 0

(f) Else,

i. IBOUNDH(JH) = 1.

The coarse-grid correction algorithm is a stationary iteration preconditioned by µ0

iterations of a smoother Sh
µ0

, followed by a coarse-grid correction P (AH)−1R, followed
by another µ0 iterations of the smoother Sh

µ0
. Iterating µ1 times, the coarse-grid

correction algorithm is given by

Algorithm 11 CCFD CG eval(ph, ph
0 , f

h):

1. For k = 0, . . . , µ1 − 1

(a) ph
k+1/3 = Sh

µ0
(ph

k, fh)

(b) rh
i+1/3 = fh − Ahph

k+1/3

(c) Solve
AHeH

i+1/3 = Rrh
i+1/3

(d) ph
k+2/3 = ph

k+1/3 + PeH
i+1/3

(e) ph
k+1 = Sh

µ0
(ph

k+2/3, f
h)

2. ph = ph
µ1

17

The error eh
k+1/3 = ph − ph

k+1/3 after smoothing in step 1a is the same as the error

shown in figure 1. The error eh
k+2/3 = ph − ph

k+2/3, after a coarse-grid correction in

step 1d and the error ek
h, after post-smoothing in step 1e, are illustrated in figure 2.

The total error eh
k+1 = ph − ph

k+1 is given by

eh
k+1 = (Ih − (Bh)−1Ah)µ0(Ih − PAH−1

RAh)(Ih − (Bh)−1Ah)µ0eh
k.

The coarse-grid solution in step 1b of algorithm 11 is a cell-centered finite difference
approximation of the error eh

k+1/3 = ph − ph
k+1/3 on the coarse-grid space ΩH .

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY

E
rr

or

0
5

10
15

20
25

30

0

10

20

30

−1

−0.5

0

0.5

1

XY
E

rr
or

Figure 2: The error eh
k+2/3 after after a coarse-grid correction (step 1d of Algorithm

11) is shown on the left. The error eh
k+1 after subsequent smoothing (step 1e of

Algorithm 11) is shown on the right.

Remark 9. Ewing and Shen (1993) indicate that smooth variations of the hydraulic
conductivity coefficient within a coarse-grid cell does not seriously effect the conver-
gence of the coarse-grid correction scheme. In cases where there are large jumps in
the coefficient, a semi-coarsening approach can be used. For example, there may be
large differences in the vertical conductivity from one layer to the next. In such cases,
it is best that coarsening be limited to only the horizontal directions.

Remark 10. Bramble and others (1996) note that the cell-centered multigrid method
violates many of the standard heuristics for multigrid algorithms. For example, it
is believed that the sum of the orders of the prolongation/restriction pair should be
greater than the order of the PDE being approximated (Hackbush, 1985; Wesseling,
1991). The order of the flow equation is two, while the sum of the orders of the
prolongation/restriction pair in the cell-centered multigrid method also is two.

Remark 11. The three-dimensional prolongation/restriction operator is implemented
in the computer code as a series of two-dimensional prolongations/restrictions that
are, in turn, implemented as a series of one-dimensional prolongations/restrictions.

18

Special consideration for specified heads in the prolongation/restriction is not neces-
sary. Simple modifications to the prolongation/restriction algorithms allow for grids
with odd numbers of cells.

The computer code to assemble the coarse-grid matrix implements a three-
dimensional coarsening based on a series of two-dimensional coarsenings that in turn
are based on a series of one-dimensional coarsenings. Simple modifications are made
to allow for grids with odd numbers of cells.

ν-Cycle

If the coarse-grid problem is too large to solve directly, then another coarse-grid cor-
rection scheme is applied recursively until a sufficiently small problem is obtained.
The GMG solver coarsens until a one-dimensional problem is obtained. At this point,
the ILU smoother becomes an exact factorization of the coarse-grid problem. The
computational complexity of multigrid is independent of the number of levels. The
only advantage in limiting the number of levels is a possible improvement in the con-
vergence factor. In this case, a sparse matrix solver or an iterative method would be
needed to solve the larger coarse-grid problem. The GMG solver does not implement
this approach; numerical results have not indicated any advantage in using a solver
on a larger coarse-grid.

Recursive application of the coarse-grid correction scheme is referred to as the
ν-Cycle algorithm. Assume there are L levels of the multigrid algorithm numbered
by s = L − 1, . . . , 0 where level s = 0 is the coarsest level. Superscript s is used on
vectors and operators to indicate the space they are in. The multigrid components
are defined as follows:

1. Restriction Operator Rs : Ωs → Ωs−1.

2. Prolongation Operator P s : Ωs−1 → Ωs.

3. Smoother Ss
µ0

: Ωs → Ωs.

4. Coefficient Matrix As : Ωs → Ωs.

The multilevel CCFD matrix is defined by

AL−1 = Ah (25)

As−1 =
1

2
RsAsP s, for s = L− 1, . . . 1 (26)

The recursive ν-Cycle algorithm is given by

Algorithm 12 ν-Cycle eval(ps, f s, As):

1. If s = 0, then

(a) ps = (As)−1f s

19

2. Else

(a) ps = Ss
µ0

(ps, f s)

(b) If s = L− 1, then ν = 1

(c) For m = 0, . . . , ν − 1

i. rs−1 = Rs(f s − Asps)

ii. ps−1 = 0

iii. ν-Cycle eval(ps−1, rs−1, As−1)

iv. ps = ps + P sps−1

v. ps = Ss
µ0

(ps, f s)

Algorithm 12 represents one cycle of the multigrid algorithm. The PCG precondi-
tioner in the GMG package (Algorithm 3) is given by µ1 cycles of Algorithm 12 as
follows:

Algorithm 13 ph = MG eval(ph
0 , f

h, Ah):

1. For k = 0, . . . , µ1 − 1

(a) ν-Cycle eval(ph, fh, Ah)

The parameter ν on line 2c of Algorithm 12 represents the number of iterations used
for the approximate coarse-grid correction on each level. The value of ν is typically
one or two and results in various grid schedules. The different grid schedules are
illustrated in figure 3. For ν = 1, a so-called V-Cycle results, while ν = 2 produces
a W-Cycle (Briggs, 1987; Trottenberg and others, 2001). For both the V-Cycle and
W-Cycle, a value of ν = 1 is used for level s = L − 1; otherwise, two cycles would
result. The GMG package uses ILU smoothing with µ0 = µ1 = ν = 2.

������

������

������

������

	�	
�

������

�����
LEVEL

3

2

1

0

������

������

������ ������

	�	
�

��������

����

������

������

������

������

������

������

������

������

3

2

1

0

LEVEL

Figure 3: The grid schedules for a 4-level multigrid cycle. The grid schedule on the
left is for ν = 1 (V-Cycle) and the grid schedule for ν = 2 (W-Cycle) is shown on the
right.

Remark 12. Bramble and others (1996) show that the cell-centered multigrid algo-
rithm converges with an iterative rate of convergence bounded independently of the

20

number of levels. That the simplest prolongation/restriction pairs are able to be used
(see Remark 10) and accurately approximate the coarse-grid CCFD discretization
using (24) (see Remark 9) is the reason why the geometric multigrid preconditioner
in the GMG solver is remarkably efficient in terms of memory requirements and com-
puter execution time.

Comparison of GMG with AMG

The AMG solver is linked to MF2K using the LMG package described in Mehl and
Hill (2001). Comparisons are made between GMG and AMG for several large two-
dimensional and three-dimensional ground-water flow problems. The LMG package
uses a scaled l2-norm of the residual equation (13) as a stopping criterion. To make the
comparisons equal, the l2-norm in LMG is unscaled and the same stopping criterion
are used in GMG. With these modifications, the stopping criterion for both solvers is
presumed to be about equal. Conjugate gradient acceleration is implemented in the
AMG solver for all the test problems. The test problems were run on a Linux work
station with a 1.4 gigahertz (GHz) processor and 1 gigabyte (GB) of random access
memory (RAM).

The computational efficiencies of GMG and AMG are compared in Table 1 using
seven different test problems. Test problems 1 through 5 are taken from Mehl and
Hill (2001). Test problem 6 is an enlargement of the test problem given in (Harbaugh
and others, 2000, p. 89). Test problem 7 is from Detwiler and others (2002).

Table 1: Comparison of computational differences between the GMG (cell-centered
geometric multigrid preconditioner) and AMG (algebraic multigrid) solvers for differ-
ent ground-water flow problems.

Memory CPU Time
Test (megabytes) (seconds) Iterations

Problem 1 Type 2 (l,m, n) GMG AMG GMG AMG GMG AMG
1 SS, NL (120, 24, 60) 195 925 219 371 48 71
2 SS, L (700, 1500, 1) 132 367 33 37 7 12
3 TR, NL (194, 190, 4) 21 64 671 875 1740 886
4 SS, L (160, 194, 15) 66 208 29 31 13 21
5 SS, NL (153, 163, 3) 12 33 6 18 25 89
6 SS, L (160, 160, 40) 115 596 72 115 22 13

3 125 3 27 3 6
7 SS, L (855, 1952, 1) 209 595 32 38 4 4

1 (SS, steady-state; TR, transient; L, linear, NL, nonlinear)
2 (columns, rows, layers)
3 Coarsening along columns and rows only (SC=1).

Problem 1 is a large three-dimensional steady-state nonlinear problem. The variance
of the hydraulic-conductivity field is approximately 4.0. The nonlinearity is

21

weak and requires only a few Picard iterations. The residual stopping criterion
is set at RCLOSE = 10−5. The AMG solver requires about five times as much
memory as the GMG solver.

Problem 2 is a large two-dimensional steady-state linear problem with a complex
hydraulic-conductivity field. The residual stopping criterion is set at RCLOSE =
10−10. The GMG solver and the AMG solver perform equally well in terms of
CPU time, with the AMG solver requiring about three times as much memory.

Problem 3 is a moderately sized nonlinear transient model with 49 stress periods
resulting in a large number of total iterations. The problem is also nonlinear in
each stress period, but the nonlinearities are weak and require only a few Picard
iterations. This problem is a case where the head change becomes small, but
the residual remains relatively large. The stopping criterion for the residual is
set at RCLOSE = 10−2. The GMG solver takes about twice as many iterations
per stress period as the AMG solver. The CPU time per iteration for the GMG
solver is about half that of the AMG time per iteration, making the total CPU
times about equal. The memory used by the AMG solver is about three times
the memory used by GMG.

Problem 4 is a large three-dimensional model with a complex heterogeneous hydraulic-
conductivity field. The problem is steady-state and linear. The convergence
criterion is set at RCLOSE = 10−5. The CPU times are about equal for the
GMG solver and AMG solver with the AMG solver, using about three times
the memory.

Problem 5 is a moderately sized three-dimensional steady-state model with a hydraulic-
conductivity field that is fairly complex and strong nonlinearities resulting from
evaportranspiration. An adaptive damping strategy is used in both solvers for
this problem. The convergence criterion is set at RCLOSE = 10−5. The relative
efficiency of the GMG solver is due to the adaptive convergence criterion for
the inner iteration as described in the “Convergence Criteria” section.

Problem 6 is an enlargement of the steady-state example problem given in (Harbaugh
and others, 2000, p. 89). The enlargement consists of increasing both the row
and column count to 160, and the layer count to 40. Five different hydraulic
conductivity zones were associated with the 40 layers; these zones were created
using the Layer-Property Flow (LPF) package (Harbaugh and others, 2000, p.
59). To ensure that some fluid flow occurred in all zones, additional wells were
situated at more levels in these layers. Constant heads were imposed in a few
columns along one side of the discretized domain, as in the original example
problem. For the linear simulation, the drain package was eliminated, and the
unconfined layers were changed to confined.

The AMG solver requires about five times as much memory as the GMG solver
for this test problem. If coarsening is restricted only to the columns and rows,

22

then the performance of the GMG solver improves dramatically. The residual
convergence criterion is set at RCLOSE = 10−5.

Problem 7 is a steady-state linear problem used in Detwiler and others (2002) to
illustrate the ability of AMG to efficiently solve the system of equations re-
sulting from complex, irregularly shaped domains as part of a two-phase two-
dimensional flow and transport problem. The nonaqueous phase liquid (NAPL)
is entrapped in fractures as illustrated in Figure 4. Cells of entrapped NAPL
are modeled in MF2K by inactive cells. These inactive cells are accounted for,
in the coarsening of the CCFD matrix, by Algorithms 9 and 10. The residual
convergence criterion is set at RCLOSE = 10−5.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

Figure 4: Section (22 × 50 cells) of 1952 × 855 cell grid containing fractures (dark
areas) with entrapped nonaqueous phase liquid.

Input Instructions for the GMG Solver

The GMG solver package has both an inner loop and outer loop. The inner loop is
set up for the convergence of the linear problem and is controlled by the parameters
RCLOSE and IITER. A nonlinear problem is controlled through the outer loop and
uses parameters HCLOSE and MXITER. As a solution of the linear problem is used as
an approximate solve for the nonlinear problem, all four parameters are needed when
solving a nonlinear problem. The operation of these parameters is further explained
in the section titled “Module GMG1AP”.

Input for the GMG package is read from the file that is type ”GMG” in the name
file. Free format is used for reading all values on the input list. The GMG data file
should contain the following data items:

0. RCLOSE IITER HCLOSE MXITER

1. DAMP IADAMP IOUTGMG

2. ISM ISC

3. RELAX

23

An optional [#Text] item can be inserted multiple times before any of the above items;
the symbol # must appear in the first column. These optional items are treated as
comments. The convergence criteria for the GMG package may look similar to other
packages, such as the PCG2 package described in Hill (1990), but their meaning may
be quite different. The reader is encouraged to refer back to the “Convergence Crite-
ria” section for more detail. The GMG data items represent the following quantities:

RCLOSE is the residual convergence criterion for the inner iteration. The PCG al-
gorithm computes the l2-norm of the residual and compares it against RCLOSE.
Typically, RCLOSE is set to the same value as HCLOSE (see below). If RCLOSE is
set too high, then additional outer iterations may be required due to the linear
equation not being solved with sufficient accuracy. On the other hand, a too
restrictive setting for RCLOSE for nonlinear problems may force an unnecessarily
accurate linear solution. This may be alleviated with the IITER parameter or
with damping.

IITER is the maximum number of PCG iterations for each linear solution. A value
of 100 is typically sufficient. It is frequently useful to specify a smaller number
for nonlinear problems so as to prevent an excessive number of inner iterations.

HCLOSE is the head-change convergence criterion for nonlinear problems. After each
linear solve (inner iteration), the max-norm of the head change is compared
against HCLOSE. HCLOSE can be set to a large number for linear problems; HCLOSE
is ignored if MXITER=1.

MXITER is the maximum number of outer-iterations. For linear problems, MXITER
can be set to 1. For nonlinear problems, MXITER needs to be larger, but rarely
more than 100.

DAMP is the value of the damping parameter. For linear problems, a value of 1.0
should be used. For nonlinear problems, a value less than 1.0 but greater than
0.0 may be necessary to achieve convergence. A typical value for nonlinear
problems is 0.5. Damping also helps control the convergence criterion of the
linear solve to alleviate excessive PCG iterations (see equation (20).

IADAMP is a flag that controls adaptive damping. The possible values of IADAMP and
their meanings are as follows:

If IADAMP = 0, then the value assigned to DAMP is used as a constant damping
parameter.

If IADAMP 6= 0, then the value of DAMP is used for the first nonlinear iteration
(see “Nonlinear Solution” section). The damping parameter is adaptively
varied on the basis of the head change, using Cooley’s method as described
in Mehl and Hill (2001), for subsequent iterations.

IOUTGMG is a flag that controls the output of the GMG solver. The possible values
of IOUTGMG and their meanings are as follows:

24

If IOUTGMG = 0, then only the solver inputs are printed.

If IOUTGMG = 1, then for each linear solve, the number of PCG iterations, the
value of the damping parameter, the l2-norm of the residual, and the max-
norm of the head-change and its location (column, row, layer) are printed.
At the end of a time/stress period, the total number of GMG calls, PCG
iterations, and a running total of PCG iterations for all time/stress periods
are printed.

If IOUTGMG = 2, then the convergence history of the PCG iteration is printed,
showing the l2-norm of the residual and the convergence factor for each
iteration.

IOUTGMG = 3 is the same as IOUTGMG = 1 except output is sent to the terminal
instead of the MF2K LIST output file.

IOUTGMG = 4 is the same as IOUTGMG = 2 except output is sent to the terminal
instead of the MF2K LIST output file.

ISM is a flag that controls the type of smoother used in the multigrid preconditioner.
The possible values for ISM and their meanings are as follows:

If ISM = 0, then ILU(0) smoothing is implemented in the multigrid precon-
ditioner. This smoothing requires an additional vector on each multigrid
level to store the pivots in the ILU factorization.

If ISM = 1, then Symmetric Gauss-Seidel (SGS) smoothing is implemented
in the multigrid preconditioner. No additional storage is required for this
smoother; users may want to use this option if available memory is ex-
ceeded or nearly exceeded when using ISM=0. Using SGS smoothing is
not as robust as ILU smoothing; additional iterations are likely to be re-
quired in reducing the residuals. In extreme cases, the solver may fail to
converge as the residuals cannot be reduced sufficiently.

ISC is a flag that controls semi-coarsening in the multigrid preconditioner. The
possible values of ISC and their meanings are given as follows:

If ISC = 0, then the rows, columns and layers are all coarsened.

If ISC = 1, then the rows and columns are coarsened, but the layers are not.

If ISC = 2, then the columns and layers are coarsened, but the rows are not.

If ISC = 3, then the rows and layers are coarsened, but the columns are not.

If ISC = 4, then there is no coarsening.

Typically, the value of ISC should be 0 or 1. In the case that there are large
vertical variations in the hydraulic conductivities, , then a value of 1 should
be used (see Remark 9 in “Coarse-Grid Correction” section). If no coarsening
is implemented (ISC = 4), then the GMG solver is comparable to the PCG2
ILU(0) solver described in Hill (1990) and uses the least amount of memory.

25

RELAX is a relaxation parameter for the ILU preconditioned conjugate gradient
method. The RELAX parameter can be used to improve the spectral condi-
tion number of the ILU preconditioned system. The value of RELAX should be
approximately one. However, the relaxation parameter can cause the factor-
ization to break down. If this happens, then the GMG solver will report an
assembly error and a value smaller than one for RELAX should be tried. This
item is read only if ISC = 4.

Adaptive Damping Example

A sample input file for the GMG package is given below for test problem 5:

#==============================

Test 5

#==============================

RCLOSE IITER HCLOSE MXITER

#==============================

1.0E-5 100 1.0E-5 100

#==============================

DAMP IADAMP IOUTGMG

#==============================

0.5 1 4

#==============================

ISM SC

#==============================

0 0

The convergence criterion for the l2-norm of the residual in the inner iteration and
the head-change criterion for the outer iteration are both 10−5. The maximum num-
ber of outer-iterations is 100. The maximum number of PCG iterations for a given
outer-iteration is 100. Adaptive damping is implemented with an initial damping
value of 0.5. The output for the solver, including reduction histories, is written to
standard out. ILU smoothing is implemented in the multigrid preconditioner and full
coarsening is used for the columns, rows, and layers. The GMG output from this test
problem is given below:

MODFLOW-2000
U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

Version 1.12.01 10/03/2003

Using NAME file: dvr.nam
Run start date and time (yyyy/mm/dd hh:mm:ss): 2004/06/28 14:53:04

GMG -- PCG GEOMETRIC MULTI-GRID SOLUTION PACKAGE:

RCLOSE = 1.00E-05; INNER CONVERGENCE CRITERION
IITER = 100; MAX INNER ITERATIONS

26

HCLOSE = 1.00E-05; OUTER CONVERGENCE CRITERION
MXIITER = 100; MAX OUTER ITERATIONS
DAMP = 5.00E-01; DAMPING PARAMETER
IADAMP = 1; ADAPTIVE DAMPING FLAG
IOUTGMG = 4; OUTPUT CONTROL FLAG
ISM = 0; SMOOTHER FLAG
ISC = 0; COARSENING FLAG
RELAX = 0.00E+00; RELAXATION PARAMETER

COOLEY’S ADAPTIVE DAMPING METHOD IMPLEMENTED
ILU SMOOTHING IMPLEMENTED
FULL COARSENING

5 MEGABYTES OF MEMORY ALLOCATED BY GMG

ITER: 0 RES: 1.9373E+07 CFAC: 1.000
ITER: 1 RES: 7.7200E+04 CFAC: 0.004

PCG ITERATIONS : 1
DAMPING : 0.500
L2-NORM OF RESIDUAL : 7.7200E+04
MAX HEAD CHANGE : 2.3431E+03
MAX HEAD CHANGE AT (COL,ROW,LAY) : (32,63,1)

ITER: 0 RES: 9.6758E+06 CFAC: 1.000
ITER: 1 RES: 4.8186E+04 CFAC: 0.005

PCG ITERATIONS : 1
DAMPING : 1.000
L2-NORM OF RESIDUAL : 4.8186E+04
MAX HEAD CHANGE : 1.2412E+03
MAX HEAD CHANGE AT (COL,ROW,LAY) : (32,63,1)

ITER: 0 RES: 4.9663E+04 CFAC: 1.000
ITER: 1 RES: 8.1997E+03 CFAC: 0.165
ITER: 2 RES: 4.1679E+03 CFAC: 0.508
ITER: 3 RES: 4.5382E+02 CFAC: 0.109
ITER: 4 RES: 2.2520E+01 CFAC: 0.050
ITER: 5 RES: 4.8002E-01 CFAC: 0.021
ITER: 6 RES: 2.2607E-02 CFAC: 0.047
ITER: 7 RES: 1.6610E-03 CFAC: 0.073
ITER: 8 RES: 1.8021E-04 CFAC: 0.108
ITER: 9 RES: 4.5522E-06 CFAC: 0.025

PCG ITERATIONS : 9
DAMPING : 0.966
L2-NORM OF RESIDUAL : 4.5522E-06
MAX HEAD CHANGE : 6.4636E+01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (55,72,1)

27

ITER: 0 RES: 6.4034E+03 CFAC: 1.000
ITER: 1 RES: 2.1542E+03 CFAC: 0.336
ITER: 2 RES: 2.3452E+02 CFAC: 0.109
ITER: 3 RES: 3.1895E+01 CFAC: 0.136

PCG ITERATIONS : 3
DAMPING : 0.500
L2-NORM OF RESIDUAL : 3.1895E+01
MAX HEAD CHANGE : 7.7927E+01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (55,72,1)

ITER: 0 RES: 3.1059E+03 CFAC: 1.000
ITER: 1 RES: 5.4095E+02 CFAC: 0.174

PCG ITERATIONS : 1
DAMPING : 0.704
L2-NORM OF RESIDUAL : 5.4095E+02
MAX HEAD CHANGE : 2.0304E+01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (55,72,1)

ITER: 0 RES: 1.8445E+03 CFAC: 1.000
ITER: 1 RES: 1.3377E+02 CFAC: 0.073

PCG ITERATIONS : 1
DAMPING : 0.777
L2-NORM OF RESIDUAL : 1.3377E+02
MAX HEAD CHANGE : 5.3870E+00
MAX HEAD CHANGE AT (COL,ROW,LAY) : (80,104,1)

ITER: 0 RES: 1.5616E+03 CFAC: 1.000
ITER: 1 RES: 6.9107E+01 CFAC: 0.044

PCG ITERATIONS : 1
DAMPING : 0.500
L2-NORM OF RESIDUAL : 6.9107E+01
MAX HEAD CHANGE : 5.1697E+00
MAX HEAD CHANGE AT (COL,ROW,LAY) : (80,104,1)

ITER: 0 RES: 2.3341E+02 CFAC: 1.000
ITER: 1 RES: 3.5979E+01 CFAC: 0.154

PCG ITERATIONS : 1
DAMPING : 1.000
L2-NORM OF RESIDUAL : 3.5979E+01
MAX HEAD CHANGE : 6.9644E-01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (57,66,1)

ITER: 0 RES: 3.5979E+01 CFAC: 1.000
ITER: 1 RES: 1.3609E+01 CFAC: 0.378

28

ITER: 2 RES: 1.5037E+00 CFAC: 0.110
ITER: 3 RES: 1.0185E-01 CFAC: 0.068
ITER: 4 RES: 8.9790E-03 CFAC: 0.088
ITER: 5 RES: 3.9983E-04 CFAC: 0.045
ITER: 6 RES: 1.8652E-05 CFAC: 0.047
ITER: 7 RES: 5.4129E-07 CFAC: 0.029

PCG ITERATIONS : 7
DAMPING : 1.000
L2-NORM OF RESIDUAL : 5.4129E-07
MAX HEAD CHANGE : 1.5882E-01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (13,43,3)

ITER: 0 RES: 7.4818E-07 CFAC: 1.000
ITER: 1 RES: 1.1912E-07 CFAC: 0.159

PCG ITERATIONS : 1
DAMPING : 1.000
L2-NORM OF RESIDUAL : 1.1912E-07
MAX HEAD CHANGE : 5.7020E-10
MAX HEAD CHANGE AT (COL,ROW,LAY) : (6,36,2)

TIME STEP : 1
STRESS PERIOD : 1
GMG CALLS : 10
PCG ITERATIONS : 26

TOTAL PCG ITERATIONS : 26

Run end date and time (yyyy/mm/dd hh:mm:ss): 2004/06/28 14:53:10
Elapsed run time: 5.370 Seconds

Normal termination of MODFLOW-2000

The above listing shows the effects of adaptive damping and an adaptive inner-
iteration convergence criterion. If the damping parameter is less than 1.0, then the
effects of nonlinearity are strong and the accuracy for the PCG solution is decreased.
When the damping parameter is equal to 1.0, then the nonlinear problem is converging
and the accuracy of the PCG solution is increased.

Semi-Coarsening Example

A sample input file for the GMG package is given below for test problem 6:

#==============================

Test 6

#==============================

RCLOSE IITER HCLOSE MXITER

29

#==============================

1.0E-5 100 1.0E-5 1

#==============================

DAMP IADAMP IOUTGMG

#==============================

1.0 0 4

#==============================

ISM SC

#==============================

0 1

Because this is a linear problem, MXITER is set to 1, the damping parameter is set to
1.0, and adaptive damping is disabled. The level of coarsening for the columns and
rows is set at maximum, and no coarsening is done for the layers. The GMG output
from this test problem is given below:

MODFLOW-2000
U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

Version 1.12.01 10/03/2003

Using NAME file: twri_large.nam
Run start date and time (yyyy/mm/dd hh:mm:ss): 2004/06/28 15:00:03

GMG -- PCG GEOMETRIC MULTI-GRID SOLUTION PACKAGE:

RCLOSE = 1.00E-05; INNER CONVERGENCE CRITERION
IITER = 100; MAX INNER ITERATIONS
HCLOSE = 1.00E-05; OUTER CONVERGENCE CRITERION
MXIITER = 1; MAX OUTER ITERATIONS
DAMP = 1.00E+00; DAMPING PARAMETER
IADAMP = 0; ADAPTIVE DAMPING FLAG
IOUTGMG = 4; OUTPUT CONTROL FLAG
ISM = 0; SMOOTHER FLAG
ISC = 1; COARSENING FLAG
RELAX = 0.00E+00; RELAXATION PARAMETER

ILU SMOOTHING IMPLEMENTED
COARSENING ALONG COLUMNS AND ROWS ONLY

91 MEGABYTES OF MEMORY ALLOCATED BY GMG

ITER: 0 RES: 4.0399E+01 CFAC: 1.000
ITER: 1 RES: 2.8635E+00 CFAC: 0.071
ITER: 2 RES: 3.7051E-02 CFAC: 0.013
ITER: 3 RES: 5.1541E-03 CFAC: 0.139
ITER: 4 RES: 6.7234E-04 CFAC: 0.130
ITER: 5 RES: 8.8153E-05 CFAC: 0.131
ITER: 6 RES: 5.4711E-06 CFAC: 0.062

PCG ITERATIONS : 6

30

DAMPING : 1.000
L2-NORM OF RESIDUAL : 5.4711E-06
MAX HEAD CHANGE : 5.5764E+01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (95,15,20)

TIME STEP : 1
STRESS PERIOD : 1
GMG CALLS : 1
PCG ITERATIONS : 6

TOTAL PCG ITERATIONS : 6

Run end date and time (yyyy/mm/dd hh:mm:ss): 2004/06/28 15:00:28
Elapsed run time: 25.169 Seconds

Normal termination of MODFLOW-2000

ILU PCG Example

Test problem 6 is repeated without any coarsening. Double precision is forced as a
compiler option to minimize the effects of rounding error. The reduction histories are
suppressed. The input file and the output are given below as follows:

#==============================

Test 6

#==============================

RCLOSE IITER HCLOSE MXITER

#==============================

1.0E-5 500 1.0E-5 1

#==============================

DAMP IADAMP IOUTGMG

#==============================

1.0 0 3

#==============================

ISM SC

#==============================

0 4

#==============================

RELAX

#==============================

1.00

MODFLOW-2000
U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-WATER FLOW MODEL

Version 1.12.01 10/03/2003

31

Using NAME file: twri_large.nam
Run start date and time (yyyy/mm/dd hh:mm:ss): 2004/06/28 15:14:55

GMG -- PCG GEOMETRIC MULTI-GRID SOLUTION PACKAGE:

RCLOSE = 1.00E-05; INNER CONVERGENCE CRITERION
IITER = 500; MAX INNER ITERATIONS
HCLOSE = 1.00E-05; OUTER CONVERGENCE CRITERION
MXIITER = 1; MAX OUTER ITERATIONS
DAMP = 1.00E+00; DAMPING PARAMETER
IADAMP = 0; ADAPTIVE DAMPING FLAG
IOUTGMG = 3; OUTPUT CONTROL FLAG
ISM = 0; SMOOTHER FLAG
ISC = 4; COARSENING FLAG
RELAX = 1.00E+00; RELAXATION PARAMETER

ILU SMOOTHING IMPLEMENTED
NO COARSENING

49 MEGABYTES OF MEMORY ALLOCATED BY GMG

PCG ITERATIONS : 452
DAMPING : 1.000
L2-NORM OF RESIDUAL : 9.7500E-06
MAX HEAD CHANGE : 5.5764E+01
MAX HEAD CHANGE AT (COL,ROW,LAY) : (95,15,20)

TIME STEP : 1
STRESS PERIOD : 1
GMG CALLS : 1
PCG ITERATIONS : 452

TOTAL PCG ITERATIONS : 452

Run end date and time (yyyy/mm/dd hh:mm:ss): 2004/06/28 15:17:07
Elapsed run time: 2 Minutes, 12.242 Seconds

Normal termination of MODFLOW-2000

Description of GMG Interface

The GMG interface program links the GMG library to MF2K and is activated by
file type ”GMG” in the name file. The interface program consists of two primary
modules: the allocation module (GMG1ALG) and the solver module (GMG1AP).
The GMG1ALG module reads the input for the solver and calls the GMG library

32

to allocate the solver. The GMG1AP module calls the GMG library to assemble
and evaluate the linear equation. The interface contains an additional module (RE-
SPRINT) for printing the convergence history of the PCG iteration.

The MF2K main program is modified to recognize the ”GMG” file type and call
the GMG interface program to allocate, assemble, and evaluate the CCFD problem.
These modifications can be made to other versions of MODFLOW. The modifications
to the MF2K program Version 1.12 are presented here as a guide.

1. After line 2302 insert the following:

IF(IUNIT(42).GT.0) CALL MF2KGMG_FREE()

This deallocates the GMG package after each simulation when MF2K is run in
batch mode.

2. After line 1900 insert the following:

IF (IUNIT(42).GT.0)
& CALL GMG1AP(Z(LCSNEW),GX(LCRHS),GX(LCCR),GX(LCCC),
& GX(LCCV),GX(LCHCOF),HNOFLO,IG(LCIBOU),
& IITER,MXITER,RCLOSES,HCLOSES,
& KKITER,KKSTP,KKPER,
& ICNVG,DAMP,IADAMP,IOUTGMG,IOUT)

This provides a call to the GMG interface for solving the linear equation in the
sensitivity loop.

3. After line 1226 insert the following:

IF (IUNIT(42).GT.0)
& CALL GMG1AP(GZ(LCHNEW),GX(LCRHS),GX(LCCR),GX(LCCC),
& GX(LCCV),GX(LCHCOF),HNOFLO,IG(LCIBOU),
& IITER,MXITER,RCLOSE,HCLOSE,
& KKITER,KKSTP,KKPER,
& ICNVG,DAMP,IADAMP,IOUTGMG,IOUT)

This provides a call to the GMG interface for solving the linear equation for
each outer-iteration in the time/stress period loop.

4. After line 305 insert the following:

IF(IUNIT(42).GT.0)
1 CALL GMG1ALG(NCOL,NROW,NLAY,MXITER,IITER,
2 RCLOSE,HCLOSE,DAMP,IADAMP,
3 IOUTGMG,IUNIT(42),IOUTG)

This provides a call to the GMG interface for reading input and allocating the
GMG library.

33

5. Add the GMG file type specifier to position 42 of the CUNIT array on line 105

as follows:

DATA CUNIT/’BCF6’, ’WEL ’, ’DRN ’, ’RIV ’, ’EVT ’, ’ ’, ’GHB ’, ! 7

& ’RCH ’, ’SIP ’, ’DE4 ’, ’SOR ’, ’OC ’, ’PCG ’, ’LMG ’, ! 14

& ’gwt ’, ’FHB ’, ’RES ’, ’STR ’, ’IBS ’, ’CHD ’, ’HFB6’, ! 21

& ’LAK ’, ’LPF ’, ’DIS ’, ’SEN ’, ’PES ’, ’OBS ’, ’HOB ’, ! 28

& ’ADV2’, ’COB ’, ’ZONE’, ’MULT’, ’DROB’, ’RVOB’, ’GBOB’, ! 35

& ’STOB’, ’HUF2’, ’CHOB’, ’ETS ’, ’DRT ’, ’DTOB’, ’GMG ’, ! 42

& ’HYD ’, ’sfr ’, ’SFOB’, ’GAGE’, ’LVDA’, ’ ’, ’LMT6’, ! 49

& ’MNW1’, ’DAF ’, ’DAFG’, ’KDEP’, ’SUB ’, ’ ’, ’ ’, ! 56

& 44*’ ’/

Module GMG1ALG

The GMG1ALG module reads the input file and calls the GMG library to allocate
the solver.

1. Read values for RCLOSE, HCLOSE, MXITER, IITER, DAMP, IADAMP, IOUTGMG, ISM,
and ISC. If ISC = 4, then read value for RELAX.

2. Check for forced double precision.

3. Call GMG library module MF2KGMG_ALLOCATE to allocate the solver.

4. If IERR < 0, then call MF2K USTOP subroutine to report error and stop execu-
tion.

5. If IOUTGMG 6= 0, then print information about GMG solver.

6. Return.

The GMG library is deallocated by calling the GMG library function MF2KGMG_FREE().
When running MF2K in batch mode, deallocation of the library is necessary at the
end of each simulation.

Single-precision real-valued variables in MF2K can be extended to double precision
at compile time. The GMG library needs to know the size of the internal data being
passed in from MF2K so that appropriate pointer arithmetic can be performed. By
using the FORTRAN 95 KIND function, GMG is able to automatically detect whether
MF2K was compiled as single or double precision.

Module GMG1AP

The GMG1AP module calls the GMG library to assemble the linear equation and
the solver, compute a head change, and add the head change to the current approx-
imation. The GMG1AP module also checks for convergence and calculates adaptive
damping and adaptive PCG convergence criterion.

1. Initialize variables:

34

(a) ICNVG=0

(b) IIOUT=IOUT

(c) IF(IOUTGMG .GT. 2) IIOUT=6

(d) IF(KITER .EQ. 1) DDAMP=DAMP

(e) DAMP0=DDAMP

2. Call GMG library module MF2KGMG_ASSEMBLE to assemble the CCFD matrix,
the initial residual, and the multigrid preconditioner. The l2-norm of the resid-
ual is returned in the variable BIGR0.

3. Set PCG convergence criterion:
DRCLOSE=DDAMP*RCLOSE+(1-DDAMP)*BIGR0.

4. Calculate the head-change by calling GMG module MF2KGMG_EVAL. The l2-norm
of the residual is returned in the variable BIGR.

5. Calculate maximum head change BIGH by calling GMG module MF2KGMG_BIGH.

6. Check for convergence:

(a) If MXITER=1 and BIGR ≤ RCLOSE, then set ICNVG to 1, DDAMP to 1.0, and
go to 8.

(b) If BIGH ≤ HCLOSE and BIGR ≤ RCLOSE, then set ICNVG to 1, DDAMP to 1.0,
and go to 8.

7. If adaptive damping is implemented and it is not the first outer iteration, then
compute a new damping parameter using Cooley’s method.

8. Add damped head-change to current approximation by calling GMG module
MF2KGMG_UPDATE.

9. If IOUTGMG 6= 0, then print linear iteration results.

10. If ICNVG=1 and IOUGMG 6= 0, then print outer iteration results.

11. Return.

Description of GMG Library

The GMG library contains four primary computer codes: the vector library, the
solver library, the CCFD library, and the MF2KGMG library. The vector library
defines real-valued arrays and a generic operator. The solver library defines a generic
PCG algorithm and a generic multigrid algorithm. The CCFD library defines a
CCFD matrix, an ILU smoother, and the components used for the CCFD multigrid
method. The MF2KGMG library acts as a secondary interface allocating and as-
sembling operators from MF2K data (internal arrays) passed in through the GMG
interface modules.

35

These libraries can be viewed as forming a hierarchy of operators and methods.
The vector library forms the base of the hierarchy and is used by the solver library
to define its operators and methods. The vector library also includes built-in C
definitions used by all the libraries. The CCFD library uses operators and methods
from the solver library and vector library. The MF2KGMG library uses the vector
library, the solver library, and the CCFD library.

Some of the topics in the following sections have been described in previous sec-
tions. In particular, the ”Input Instructions for the GMG Solver” section and the
”Description of GMG Interface” section should be referred to as needed.

Vector Library

Vectors represent nodal values on an l×m× n grid. The number of nodal values, or
equations, depends on the application. For CCFD problems, the number of nodal-
values is given by neq= l ∗m ∗ n. An r_data object contains values for neq, l, m,
and n. The r_data structure is defined in the C language as follows:

typedef struct r_data
{
int l,m,n;
int neq;

}r_data;

An r_vector object contains an array of nodal values and a pointer to an r_data

object. The definition of an r_vector is given by

typedef struct r_vector
{
double* vec; /* Array of double */
r_data* rdp; /* Pointer to r_data object */

}r_vector;

int r_allocate(r_vector* r_ptr, r_data* rdp);
void r_free(r_vector* r_ptr);

Level 1 basic linear algebra subroutines (BLAS) also are defined in the vector
library. An example of a Level 1 BLAS method is the AXPY (alpha times x plus y)
operation given by y ← αx + y. The Level 1 BLAS methods use loop unrolling for
cache optimization.

The generic operator defined in the vector library computes the action of a generic
object on a r_vector object, storing the results in another r_vector object. This is
facilitated by the ability of the C language to define pointers to functions as well as
objects. The generic operator contains a pointer to an operator and a pointer to the
operator’s evaluation method. It also contains a pointer to the operator’s deallocation
method. The generic operator definition is given by the following structure:

typedef struct GEN_operator
{

36

void* A_ptr;
int (*A_eval)(r_vector*,r_vector*,void*);
void (*A_free)(void*);

}GEN_operator;

The generic operator is assembled by

int GEN_assemble(GEN_operator* GEN_ptr, void* A_ptr,
int (*A_eval)(r_vector*,r_vector*,void*),
void (*A_free)(void*))

{
GEN_ptr->A_ptr=A_ptr;
GEN_ptr->A_eval=A_eval;
GEN_ptr->A_free=A_free;

return 0;
}

The void datatype is a special datatype used commonly as a return type for functions
that do not return a value. Normally, a variable cannot be declared as type void, but
declaring a pointer to void is allowed. A pointer to any type can be converted to a
pointer to void and, conversely, a pointer to void can safely be converted to pointer to
any other type. The generic operator is evaluated and deallocated by the following:

int GEN_eval(r_vector* r2_ptr, r_vector* r1_ptr, GEN_operator* G_ptr)
{
if(G_ptr->A_eval==NULL)
{
r_copy(r2_ptr,r1_ptr);
return 0;

}
return (*G_ptr->A_eval)(r2_ptr,r1_ptr,G_ptr->A_ptr);

}

void GEN_free(GEN_operator* G_ptr)
{
if(G_ptr->A_free != NULL)
(*G_ptr->A_free)(G_ptr->A_ptr);

}

Any or all of the data members of the generic operator can be set to NULL. If A_eval
is set to NULL, then it is equivalent to the identity operator. The A_ptr data member
can be set to NULL if there is no object associated with the operation. The A_free

data member can be set to NULL if the operator is allocated and assembled outside
the normal context of the operator. The generic deallocation method is convenient
because every operator can be deallocated using the same GEN_free method.

The generic operator acts as a container for other operators. Operators have
four primary methods; allocation, deallocation, assembly, and evaluation. The first
argument in the allocation and assembly methods of an operator is a pointer to a
GEN_operator. Other arguments are provided depending on the requirements of the
operator. The allocation and assembly methods for a hypothetical operator X follow:

37

int X_allocate(GEN_operator* GEN_ptr, arg2,...)
{
X_operator* X_ptr;
int size,total_size=0;

X_ptr=(X_operator*)calloc(1,sizeof(X_operator));
if(X_ptr==NULL)
return -1;

total_size+=sizeof(X_operator);

GEN_assemble(GEN_ptr,X_ptr,X_eval,X_free);

/* Allocate the data members of X. */

return total_size;
}

int X_assemble(GEN_operator* GEN_ptr, arg2,...)
{
X_operator* X_ptr=GEN_ptr->A_ptr;

/* Assemble the data members of X. */

return 0;
}

Most methods return an integer value. For allocation methods, the return value
indicates the number of bytes allocated. However, a negative return value indicates
a failure in the method.

The evaluation method of an operator takes exactly three arguments. The first
and second arguments are pointers to r_vector objects and the third argument is a
pointer to void. The deallocation method takes exactly one argument; a pointer to
void. The X operator evaluation and deallocation methods are defined as follows:

int X_eval(r_vector* r2_ptr, r_vector* r1_ptr, void* A_ptr)
{
X_operator* X_ptr=A_ptr;

/* Compute the action of X on a vector. */

return 0;
}

void X_free(void* A_ptr)
{
X_operator* X_ptr=A_ptr;

/* Deallocate the data members of X. */

free(X_ptr);
}

38

Note that the pointer to void is converted to a pointer to an X object in the above
examples. A pointer should be thought of simply as an integer value representing
the address of some specific location in memory. Prior to accessing the data at that
address, the type of data must be resolved. This is accomplished at run time by
casting the pointer to reference a specific datatype.

Solver Library

The generic operator definition given in the vector library is used to define a generic
PCG operator in the solver library. Multilevel r_vector objects and multilevel
generic operators are defined in the solver library to construct a generic multigrid
operator.

PCG Operator

A generic PCG operator was introduced in Algorithm 3. The C language definition
of this operator follows:

typedef struct PCG_operator
{
/* Work vectors. */
r_vector r,p,z;

/* Iteration parameters. */
double RCLOSE;
int IITER,IOUT,IOUTGMG;

/* Pointers to generic operators. */
GEN_operator *A_ptr,*B_ptr;

int ow; /* Overwrite flag. */

double BIGR; /* Final Residual */
}PCG_operator;

int PCG_allocate(GEN_operator* PCG_GEN_ptr, int ow, r_data* rdp);
void PCG_free(void* A_ptr);
int PCG_assemble(GEN_operator* PCG_GEN_ptr,

GEN_operator* A_GEN_ptr,
GEN_operator* B_GEN_ptr);

int PCG_set(GEN_operator* PCG_GEN_ptr, int IITER,
double RCLOSE, int IOUTGMG, int IOUT);

int PCG_eval(r_vector* d2_ptr, r_vector* d1_ptr, void* A_ptr);

The overwrite flag ow indicates whether the right-hand side is to be overwritten by the
residual, saving the memory cost of one work vector. In applying GMG to MF2K,
the right-hand side is the initial residual and is allowed to be overwritten by the
PCG operator. The CCFD and multigrid operators are given to the PCG operator
as pointers to generic operators. The maximum number of iterations, the residual

39

stopping criterion, the print flag, and FORTRAN unit number are passed to the PCG
operator through the PCG_set method. The PCG operator can be defined recursively
allowing a PCG operator to be a preconditioner in the PCG operator.

Multigrid Operator

Multilevel r_vector objects and multilevel generic operators are defined in the solver
library as follows:

typedef struct mg_data
{
r_data* rd_list; /* Array of r_data objects */
int levels;

}mg_data;

int mg_data_allocate(mg_data* mgdp, levels);

void mg_data_free(mg_data* mgdp);

typedef struct mg_vector
{
mg_data* mgdp; /* Pointer to mg_data object */
int i0,i1;
r_vector* r_list; /* Array of r_vector objects */

}mg_vector;

int mg_vector_allocate(mg_vector* mgp, int i0, int i1, mg_data* mgdp);
void mg_vector_free(mg_vector* mgp);

typedef struct MG_GEN_operator
{
mg_data* mgdp; /* Pointer to mg_data object */
GEN_operator* GEN_list; /* Array of generic operators */

}MG_GEN_operator;

int MG_GEN_allocate(MG_GEN_operator* MG_GEN_ptr, mg_data* mgdp);
void MG_GEN_free(MG_GEN_operator* MG_GEN_ptr);

The mg_data object contains an array of r_data objects (one for each level)
and the number of multigrid levels. The number of levels and the contents of the
r_data array are problem dependent and assembled outside the context of the generic
multigrid (MG) operator. In the application of GMG to MF2K, the number of levels
and the contents of the r_data array are assembled in the CCFD library.

The mg_vector object contains a pointer to an mg_data object and an array of
r_vector objects, where an r_vector object is allocated on each level s for i0≤
s ≤i1. Specifying a range of levels eliminates unnecessary allocation of work vectors
on certain levels. The MG_GEN_operator object contains a pointer to an mg_data

object and an array of GEN_operator objects.
Generic versions of the ν-Cycle (Algorithm 12) and the smoother (Algorithm 4) are

implemented as methods in the MG operator. The MG operator contains multilevel

40

vectors and pointers to multilevel generic operators. The multilevel generic operators
are assembled outside the context of the MG operator and passed as pointers to the
MG object. In applying GMG to MF2K, the multilevel generic operators are defined
in the CCFD library; the MG operator accesses these methods indirectly. The MG
definition follows:

typedef struct MG_operator
{
mg_data* mgdp; /* Pointer to mg_data object */

/* Overwrite Flag */
int ow;

/* Multilevel vectors */
mg_vector mgp; /* Multilevel solution vector */
mg_vector mgb; /* Multilevel right-hand side */
mg_vector mgr; /* Multilevel residual vector */

MG_GEN_operator* A_ptr; /* Pointer to multilevel coefficient matrix */
MG_GEN_operator* B_ptr; /* Pointer to multilevel Smoother */
MG_GEN_operator* P_ptr; /* Pointer to multilevel prolongation operator */
MG_GEN_operator* R_ptr; /* Pointer to multilevel restriction operator */

int mu0; /* Number of smoothing iterations. */
int mu1; /* Number of multigrid cycles. */
int nu; /* V-Cycle(nu=1), W-Cycle(nu=2) */

}MG_operator;

int MG_allocate(GEN_operator* MG_ptr, int ow, mg_data* mgdp);
void MG_free(void* MG_free);
int MG_assemble(GEN_operator* MG_GEN_ptr,

MG_GEN_operator* A_ptr,
MG_GEN_operator* B_ptr,
MG_GEN_operator* P_ptr,
MG_GEN_operator* R_ptr);

void MG_set(GEN_operator* MG_ptr, int mu0, int mu1, int nu);

int MG_eval(r_vector* p2_ptr, r_vector* p1_ptr, void* A_ptr);

A recursive application of the MG operator can be used to implement multigrid
smoothers in the multigrid method. For example, planar relaxation is a smoother de-
scribed in Trottenberg and others (2001) for three-dimensional problems with anisotropic
coefficients. Planar relaxation involves approximating a series of two-dimensional
problems in the x, y-planes, y, z-planes, and z, x-planes; each may be approximated
by the multigrid method using line relaxation for the smoother.

If the overwrite flag ow is non-zero, then it is assumed that the smoothing method
is able to overwrite its right-hand side. This eliminates the need for an additional
work vector on each level. The ILU smoother is able to overwrite the right-hand side.

41

CCFD Library

The CCFD library allows for either single-precision or double-precision conductances.
This makes the CCFD library compatible with different compilations of MF2K where
double precision may or may not be forced. The structure of the CCFD operator is
given by

typedef struct CCFD_operator
{
r_data* rdp; /* Pointer to r_data object */
void *CC,*CR,*CV; /* Conductance arrays */
double *DD; /* Diagonal */
int *IBOUND; /* Indicates specified heads */
int prec; /* prec not zero indicates double precision */

}CCFD_operator;

The GMG interface program determines the precision of the conductance arrays at
run time and passes this information into the GMG library so that it can resolve
pointers to internal MF2K data. The data members CC, CR, and CV are defined as
pointers to void and are resolved to reference the appropriate datatype, depending
on the value of the prec data member. On the finest grid, the DD data member is
allocated and assembled in the MF2KGMG library, outside the context of the CCFD
library, and the CC, CR, CV, and IBOUND data members are given the addresses of
MF2K internal arrays. This eliminates unnecessary duplication of internal MF2K
data.

The CCFD ILU operator (Algorithms 5 and 6) contains a pointer to a CCFD
operator. The diagonal of the factorization pivots is stored as an r_vector object.
The CCFD ILU operator is defined as follows:

typedef struct CCFD_ILU_operator
{
r_vector pivots;
CCFD_operator* CCFD_ptr; * Pointer to CCFD operator *\

}CCFD_ILU_operator;

int CCFD_ILU_allocate(GEN_operator* GEN_ptr, r_data* rdp);
void CCFD_ILU_free(void* A_ptr);
int CCFD_ILU_assemble(GEN_operator* GEN_ILU_ptr,

GEN_operator* GEN_CCFD_ptr,
double RELAX);

int CCFD_ILU_eval(r_vector* p2_ptr, r_vector* p1_ptr, void* A_ptr);

The RELAX parameter is used to assemble a modified ILU factorization (see Remark
6).

The CCFD MG operator contains multilevel generic operators defined in the solver
library. These multilevel operators are allocated and assembled within the context of
the CCFD MG operator and passed as pointers to the MG operator. The CCFD MG
operator definition follows:

42

typedef struct CCFD_MG_operator
{
/* Multigrid Operators */
mg_data mgd; /* Multilevel Data */
MG_GEN_operator MGCCFD; /* Multilevel CCFD Matrix */
MG_GEN_operator MGB; /* Multilevel Smoother */
MG_GEN_operator MGP; /* Multilevel Prolongation */
MG_GEN_operator MGR; /* Multilevel Restriction */
GEN_operator MG; /* Multigrid Operator */
int SM; /* Smoother, SM=0->ILU; Otherwise, SGS */
double RELAX; /* Relaxation parameter for ILU smoother. */

}CCFD_MG_operator;

int CCFD_MG_allocate(GEN_operator* GEN_ptr,
GEN_operator* GEN_CCFD_ptr,
r_data* rdp, int ISM, int ISC, double RELAX);

void CCFD_MG_free(void* A_ptr);

int CCFD_MG_assemble(GEN_operator* GEN_CCFD_MG_ptr);

void CCFD_MG_set(GEN_operator* GEN_CCFD_MG_ptr,
int mu0, int mu1, int nu);

int CCFD_MG_eval(r_vector* p2_ptr, r_vector* p1_ptr, void* A_ptr);

On the finest grid, the multilevel CCFD operator MGCCFD references the fine-grid
CCFD operator assembled in the MF2KGMG library. On coarser levels, the CCFD
operators are assembled using Algorithms 9 and 10. Once the multilevel CCFD
operator has been assembled, the multilevel smoothing operators are assembled. The
smoothers can be either ILU or symmetric Gauss-Seidel. The ISC parameter controls
the coarsening (see ”Input Instruction for the GMG Solver”).

The prolongation/restriction operators, defined by Algorithms 7 and 8, do not
require a structure, or allocation/deallocation methods. The prolongation/restriction
operators are assembled as follows:

P_list=CCFD_MG_ptr->MGP.GEN_list;
R_list=CCFD_MG_ptr->MGR.GEN_list;

for(i=0;i<levels;i++)
{
GEN_assemble(&P_list[i],NULL,CCFD_P_eval,NULL);
GEN_assemble(&R_list[i],NULL,CCFD_R_eval,NULL);

}

MF2KGMG Library

The MF2KGMG library uses MF2K internal arrays and data, passed in from the
GMG interface program, for assembling and evaluating the CCFD problem. Vector

43

objects, the CCFD operator, the PCG operator, and the CCFD multigrid operator
are defined as static variables in the MF2KGMG library as follows:

/* Static global variables for CCFD problem. */

static r_data rd; /* Vector Data */
static r_vector r; /* Residual */
static r_vector z; /* Head-Change */
static GEN_operator CCFD; /* Cell-Centered Finite Difference Matrix */
static GEN_operator CCFDMG; /* CCFD Multigrid Operator */
static GEN_operator PCG; /* Preconditioned Conjugate Gradient */

Four primary methods for allocating and evaluating the CCFD problem are defined
in the MF2KGMG library. A brief description of each method follows:

void MF2KGMG_ALLOCATE(int* NCOL, int* NROW, int* NLAY,
int* IPREC, int* ISM, int* ISC,
int* ISIZ, int* IERR);

• The MF2KGMG_ALLOCATE method allocates and initializes the GMG solver. The
NCOL, NROW, and NLAY arguments represent the number of columns, rows, and
layers, respectively, and are used to initialize the rd object. The value pointed
to by IPREC is given to the CCFD object where a value of 0 indicates single
precision; otherwise, double precision is indicated. The values pointed to by
ISM and ISC are given to the CCFDMG object to indicate the type of smoothing
and the type of coarsening, respectively (see ”Input Instruction for the GMG
Solver”). The number of bytes allocated (in MB) and an error flag are passed
back to the GMG interface program through ISIZ and IERR, respectively. If all
the operators are allocated successfully, then the value of IERR is zero; otherwise,
it has a negative value, indicating an assembly error.

void MF2KGMG_ASSEMBLE(void* CR, void* CC, void* CV,
void* HCOF, double* HNEW, void* RHS,
void* HNOFLO, int* IBOUND, double* RES0, int* IERR);

• The MF2KGMG_ASSEMBLE method assembles the fine-grid CCFD object and resid-
ual using Algorithm 1. The addresses of the conductance arrays CR, CC, and
CV and the address of the IBOUND array are given to the CCFD object. The
precision of the HCOF, RHS, and HNOFLO arguments are resolved by testing the
precision flag stored in the CCFD object. Once the CCFD object is assembled,
then the other objects are assembled using methods from the CCFD library
and the solver library. The l2-norm of the residual is returned in the variable
RES0. If all the operators are assembled successfully, then the value of IERR is
zero; otherwise, it has a negative value, indicating an assembly error.

void MF2KGMG_EVAL(int* ITER, double* BIGR, double* BIGH, double* RCLOSE,
int* IITER, int* IOUTGMG, int* IOUT);

44

• The MF2KGMG_EVAL method computes the head change by calling the PCG
method. The number of iterations performed by the PCG method is returned
in the variable ITER. The maximum head change is returned in the variable
BIGH. The value of BIGH is used in the GMG interface program to compute
the adaptive damping parameter and to check for convergence of the Picard
iteration. The absolute value of BIGH is the max-norm of the head change. The
l2-norm of the residual is returned in the variable BIGR. The values pointed to
by the RCLOSE, IITER, IOUTGMG, and IOUT arguments are passed to the PCG
operator to set the stopping criterion, maximum iterations, level of output, and
the FORTRAN unit number respectively.

void MF2KGMG_BIGH(int* BIGHC, int* BIGHR, int* BIGHL, double* BIGH);

• The MF2KGMG_BIGH method computes the maximum head change BIGH. The
location of the maximum head change is given by COL, ROW, and LAY (column,
row, layer). The absolute value of BIGH is the max-norm of the head change.

void MF2KGMG_UPDATE(double* HNEW, double* DAMP);

• The MF2KGMG_UPDATE method takes the current head approximation HNEW and
adds the damped head change to it.

An additional method in the MF2KGMG library for deallocating the GMG solver
uses the following function:

void MF2KGMG_FREE()
{
CCFD_operator *CCFD_ptr=CCFD.A_ptr;

GEN_free(&MF2KGMG_ptr->CCFDMG);
GEN_free(&MF2KGMG_ptr->PCG);
r_free(&MF2KGMG_ptr->r);
r_free(&MF2KGMG_ptr->z);

/* CCFD operator deallocated outside of normal context */
free(CCFD_ptr->DD);
free(CCFD_ptr);

return;
}

45

References

Atkinson K., 1988, An Introduction to Numerical Analysis: New York, John Wiley & Sons Inc., 693
p.

Barrett R., Berry M., Chan T., Demmel J., Donato J., Dongarra J., Eijkhout V., Pozo R., Romine
C., and Van der Vorst H., 1994, Templates for the Solution of Linear Systems — Building Blocks
for Iterative Methods, 2nd Edition: Philadelphia, SIAM, 112 p.

Benzi M., 2002, Preconditioning techniques for large linear systems: A survey: Journal of Compu-
tational Physics, v. 182, p. 418–477.

Bramble J., Pasciak J., and Xu J., 1991, The analysis of multigrid algorithms with nonnested spaces
or noninherited quadratic forms: Mathematics of Computation, v. 56, no. 193, p. 1–34.

Bramble J., Ewing R., Pasciak J., and Shen J., 1996, The analysis of multigrid algorithms for
cell centered finite difference methods: Advances in Computational Mathematics, v. 5, no. 1, p.
15–29.

Briggs W., 1987, A Multigrid Tutorial: Philadelphia, SIAM, 88 p.

Detwiler L., Mehl S., Rajaram H., and Cheung W., 2002, Comparisions of an algebraic multigrid
algorithm to two iterative solvers used for modeling ground water flow and transport: Ground
Water, v. 40, no. 3, p. 267–272.

Dupont T., Kendall R., and Rachford H., 1968, An approximate factorization procedure for solving
self-adjoint elliptic difference equations: SIAM Journal on Numerical Analysis, v. 5, p. 559–573.

Ewing R. and Shen J., 1993, A multigrid algorithm for the cell-centered finite difference scheme,
in The Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, Copper
Mountain Colorado, April, 1993: NASA Conference Publication 3224.

Golub G. and Van Loan C., 1989, Matrix Computations: Baltimore, London, John Hopkins Univer-
sity Press, 642 p.

Gustaffson I., 1978, A class of first-order factorization methods: BIT, v. 18, p. 142–156.

Hackbush W., 1985, Multi-Grid Methods and Applications: New York, Springer-Verlag, 377 p.

Harbaugh A., Banta E., Hill M., and McDonald M., 2000, Modflow-2000, the U.S. geological survey
modular ground-water model — user guide to modularization concepts and the ground-water flow
process: U.S. Geological Survey Open-File Report 00-92, 121 p.

Hill M., 1990, Preconditioned Conjugate-Gradient 2 (PCG2), A computer program for solving
ground-water flow equations: U.S. Geological Survey Water-Resources Investigations Report 90-
4048, 43 p.

Kelley C., 1995, Iterative Methods for Linear and Nonlinear Equations: Frontiers in Applied Math-
ematicsPhiladelphia, , SIAM, 166 p.

McCormick S., ed., 1987, Multigrid Methods: SIAM, 286 p.

McDonald M. and Harbaugh A., 1988, A modular three-dimensional finite-difference ground-water
flow model: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chap-
ter A1, 548 p.

46

Mehl S. and Hill M., 2001, Modflow-2000, The U.S. Geological Survey modular ground-water model
user guide to the LINK-AMG (LMG) package for solving matrix equations using an algebraic
multigrid solver: U.S. Geological Survey Open-File Report 01-177, 34 p.

Ruge J. and Stüben K., 1987, Algebraic multigrid, in S. McCormick, ed., Multigrid Methods: SIAM,
p. 73–130.

Trottenberg U., Oosterlee C., and Schüller, A., 2001, Multigrid: San Diego, Academic Press, 631 p.

Van der Vorst H., 1990, The convergence behavior of preconditioned cg and cg-s in the presence of
rounding error, in O. Axelsson and L. Kolotilina, eds., Lecture notes in mathematics: New York,
London, Springer Verlag, 1457.

Wesseling P., 1991, An Introduction to Multigrid Methods: New York, John Wiley & Sons, 284 p.

Xu J., 1992, Iterative methods by space decomposition and subspace corrections: SIAM Review,
v. 34, no. 4, p. 581–613.

47

	Coverpage
	Titlepage
	Preface
	Contents
	Abstract
	Introduction
	The GMG Solver and MF2K
	Finite-Difference Matrix
	Specified Heads and Inactive Cells
	Linear Solution
	Nonlinear Solution
	Convergence Criteria

	Multigrid
	Smoothers
	ILU Smoother
	Coarse-Grid Correction
	-Cycle

	Comparison of GMG with AMG
	Input Instructions for the GMG Solver
	Adaptive Damping Example
	Semi-Coarsening Example
	ILU PCG Example

	Description of GMG Interface
	Module GMG1ALG
	Module GMG1AP

	Description of GMG Library
	Vector Library
	Solver Library
	PCG Operator
	MG Operator

	CCFD Library
	MF2KGMG Library

	References

